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Abstract — The proposed suspected video event detection method 
is based on unsupervised clustering of object trajectories, which 
are modeled by hidden Markov models (HMM). The clustering-
based approach for detecting abnormalities in surveillance video 
requires the appropriate definition of similarity between events. 
Motion segmentation is based on an adaptive back-ground 
subtraction method that models each pixel as a mixture of 
Gaussians. The Gaussian distributions are then evaluated to 
determine which are most likely to result from a background 
process. This yields a stable, real-time outdoor tracker that 
reliably deals with lighting changes, repetitive motions from 
clutter, and long-term scene changes. The HMM-based similarity 
method falls short in handling the overfitting problem. In this 
paper a multi-sample-based similarity measure is proposed, 
where HMM training and distance measuring are based on 
multiple samples. These multiple training data are acquired by a 
novel dynamic hierarchical clustering (DHC) method. By 
iteratively reclassifying and retraining the data groups at 
different clustering levels, the initial training and clustering 
errors due to overfitting will be sequentially corrected in later 
steps. 
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I. INTRODUCTION  
 

Video surveillance systems are widely used in many important 
sites such as supermarket, bank, hotel, etc. However, the 
captured video data are commonly stored or previewed by 
operators for finding abnormal moving objects or events. The 
value in use is very low. 
 

Many surveillance applications require analysis of the 
events taking place in video streams recorded in specific 
situations, in order to find suspicious or abnormal actions, 
which might present a threat and should be signaled to a 
human operator. Typically, the video camera is fixed and the 
site being monitored is mainly static. Object trajectories are 
extracted from the video and the video events can be 
represented by time sequence of the various features of the 
objects. In many cases, no a priori knowledge is given for 
patterns of unusual video events. Thus, we aim to analyze all 
the trajectories extracted from existing videos, and 
differentiate unusual trajectories from normal ones 
automatically. 

 
To address this problem, the approach is based on the fact 

that a normal event is associated with the commonality of the 
behavior and an unusual event indicates its distinctness. For 

instance, people running represent an unusual event if most 
people in the crowd are walking, and a car moving against 
traffic also represents an unusual event. Clearly, what 
characterizes normality is the high recurrence of some similar 
events. Typically, there are only a few such normal patterns in 
a specific surveillance scenario. Therefore, unsupervised 
clustering can be performed on all video events, so that those 
events clustered into dominant (e.g., large) groups can be 
identified as normal, while those that cannot be explained by the 
dominant groups (e.g., distant from all cluster centers) are defined as 
unusual. 

 
In real videos, the suspicious events are rare, difficult to 

describe, hard to predict and can be subtle.  Some researchers 
[1-6] define events as either clusters of parameter space 
components (normal events) or outliers (abnormal events). In 
order to perform this clustering-based approach, a similarity 
measure between two events, probably with different time 
lengths, needs to be specified. Some recent results [1-4] define 
the distance of two HMM-represented sequences based on the 
likelihood of observing one sequence given the HMM trained 
from another sequence. To be exact, the larger their likelihood 
of being generated from each other’s model will be, the more 
similar these two sequences are. However, this cross 
likelihood measurement has the problem of model over-fitting 
due to data shortage, as the HMM is trained on only one 
sample. Therefore data clustering using this single sample- 
based similarity is quite unreliable, especially for the popular 
spectral clustering algorithm [2,4-6], which is extremely 
sensitive to the construction of the similarity matrix (whose 
Eigen values are utilized). 

 
In this paper first we discuss about building a robust motion 

tracker, which is required to track the objects and their 
positions to get their trajectories. Second a multi-sample-
based similarity measure to suppress the overfitting problem is 
proposed, where HMM representation is based on several 
similar samples. The acquisition of these multiple training 
data is by hierarchically clustering and iteratively retraining 
the whole dataset, which is summarized as dynamic 
hierarchical clustering (DHC) algorithm. This algorithm can 
dynamically correct initial overfitting errors as the numbers of 
training samples increase (i.e. data clusters become larger). 

 
 
 
 
 

 



II. BUILDING A ROBUST MOTION TRACKER  
 

A robust video surveillance and monitoring system should not 
depend on careful placement of cameras. It should also be 
robust to whatever is in its visual field or whatever lighting 
effects occur. It should be capable of dealing with movement 
through cluttered areas, objects overlapping in the visual field, 
shadows, lighting changes, and effects of moving elements of 
the scene (e.g. swaying trees), slow-moving objects, and 
objects being introduced or removed from the scene. Thus, to 
monitor activities in real outdoor settings, we need robust 
motion detection and tracking that can account for such a wide 
range of effects. Traditional approaches based on 
backgrounding methods typically fail in these general 
situations. The goal is to create a robust, adaptive tracking 
system that is flexible enough to handle variations in lighting, 
moving scene clutter, multiple moving objects and other 
arbitrary changes to the observed scene. The resulting tracker 
is primarily geared towards scene-level video surveillance 
applications. 

A. Adaptive approach to motion tracking  

Rather than explicitly modeling the values of all the pixels 
as one particular type of distribution, simply model the values 
of a particular pixel as a mixture of Gaussians. Based on the 
persistence and the variance of each of the Gaussians of the 
mixture, and then determine which Gaussians may correspond 
to back ground colors. Pixel values that do not fit the back 
ground distributions are considered foreground until there is a 
Gaussian that includes them with sufficient, consistent 
evidence supporting it to convert it to a new background 
mixture. The system adapts to deal robustly with lighting 
changes, repetitive motions of scene elements, tracking 
through cluttered regions, slow-moving objects, and 
introducing or removing objects from the scene. Slowly 
moving objects take longer to be incorporated into the 
background, because their color has a larger variance than the 
background. Also, repetitive variations are learned, and a 
model for the background distribution is generally maintained 
even if it is temporarily replaced by another distribution which 
leads to faster recovery when objects are removed. The 
adaptive back grounding method contains two significant 
parameters α, the learning constant and T, the proportion of 
the data that should be accounted for by the background. 

If each pixel resulted from a single surface under fixed 
lighting, a single Gaussian would be sufficient to model the 
pixel value while accounting for acquisition noise. If only 
lighting changed over time, a single, adaptive Gaussian per 
pixel would be sufficient. In practice, multiple surfaces often 
appear in the view frustum of a particular pixel and the 
lighting conditions change. Thus, multiple, adaptive 
Gaussians are required. Use an adaptive mixture of Gaussians 
to approximate this process. [12]  

The figure 1 shows the results of the approach. Fig 1 (a) is 
the back ground image frame, Fig (b) is foreground image, Fig 
1 (c) is red hued foreground image where object is tracked, 
and Fig 1 (d) is the image frame where object’s position is 

marked with Yellow ‘plus’ and all the noise is removed from 
foreground frame. So the proposed method of tracking object 
is robust and overcomes lighting effects.   

 

 
Fig. 1 Adaptive Tracker Result. 

III.  CLUSTERING-BASED  APPROACH FOR  
ABNORMAL  EVENT  DETECTION 

A. HMM representation of video events 

In many existing work on surveillance video analysis [2, 4, 7, 
8], video events are represented as object trajectories or time 
evolutions of certain frame features, which can be further 
modeled by HMM. For example, Fig. 1(d) shows a human in 
motion is tracked and whose position can be extracted from a 
surveillance video monitoring a room door in research lab. A 
HMM with Gaussian emission probability is fitted to the 2-D 
trajectory feature vector {(x1, y1), (x2, y2), … (xT, yT)}, where 
{ x, y} denotes the coordinate of object center at every frame 
and T is the length of the trajectory. 

B. Modeling of normal events 

The clustering-based approach detects abnormal events by 
first modeling normal events. After training data that are 
acquired from the history videos are represented 
/parameterized by HMMs as described in Sec. A, 
unsupervised clustering is performed on them based on a 
certain similarity measure (will be described later in Sec. III). 
The clustering process ends up with a few data groups. Those 
groups containing large number of samples (e.g., more than 
the average number) are chosen as normal pattern groups, and 
then HMMs are learned for every normal group. These 
HMMs, denoted by {mk} (k = 1, 2, …), are models of normal 
events.  



C.  Detection of abnormal events 

Based on the models of normal groups, detection of abnormal 
events can be performed to new video data. Specifically, 
given an unseen object trajectory i, the likelihood of observing 
i given any HMM of normal events mk is denoted by L (i|mk). 
If the maximum likelihood is less than a threshold, i.e., 

                  max{ ( | )}k AL i m Th<                            (1) 

where ThA is a threshold, this query trajectory i is detected as 
abnormal. 

IV.  CLUSTERING  ALGORITHM 

A. Multi-sample-based similarity measure 

 
In some recent work [2, 4], the distance dij between two 
events/trajectories i and j, modeled by two HMMs mi and mj  
respectively, is defined as: 

    
( | ) ( | ) ( | )ij i j id L i m L j m L j m= + −

        (2) 

where L(i|mj)  denotes the log-likelihood of trajectory i 
utilizing the model mj for trajectory j, normalized by 
trajectory length T, that is, 
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Fig. 2. HMM modeling of object trajectories. 

If the trajectories i and j are different, their likelihood of being 
generated by each other’s model, L(i | mj) and L(j | mi), will be 
smaller than the likelihood of being generated by itself’s 
model, L(i | mi) and L(j | mj), thus the distance dij will be large. 
If the two trajectories are similar, the difference between the 
cross likelihood and likelihood of self modeling will be small, 
thus the distance is small. The extreme case is that distance of 
two identical trajectories will be equal to zero. However, this 
HMM-based distance measure has the problem of overfitting 
with trajectory data extracted from real videos. Note that the 
variances of the fitted Gaussian distributions indicated by 
black ellipses in Fig. 2(a) are very small. This is because 
HMM is trained on only one sample thus it fits the data too 
closely. This overfitted model will generate very different 
parameters for similar trajectories in the same direction (e.g., 
the two trajectories in Fig. 2(a)). As a result, the distance 
defined in Eq. 2 becomes too large to group similar 
trajectories into one cluster. One solution to this problem is to 

use more similar data to train a model that allows for larger 
variation as illustrated in Fig. 2(b). In terms of this multi-
sample-based modeling, the distance between two groups of 
trajectories (groups i and j) can be defined similarly to Eq. 2, 
except for a modification of the likelihood term. That is, we 
propose the following definition  

          
1 1

( | ) log ( | )j r j
ri r

L i m P i m
N T

= ∑                   (4) 

where ir denotes the r-th trajectory in group i (with its length 
equal to Tr) and Ni is the number of trajectories in group i. In 
other words, L(i | mj) is refined as the average of the 
likelihood of all trajectories in group i, generated by the HMM 
trained on group j. The multi-sample-based distance measure 
is more reliable than the one based on a single sample. For 
example, the distance between the two trajectories in Fig. 2(a) 
calculated by Eqs. 2 and 3 is equal to 263.72, while the 
distance between the two groups containing 20 trajectories 
each in Fig. 2(b) calculated by Eqs. 2 and 4 is equal to 
22.16[10].  As the trajectories shown in Figs. 2(a) and (b) are 
all on the same road and in the same direction, thus they need 
to be clustered into one group. This can be accomplished 
much easier with a smaller distance calculated using Eq. 4.  

V.  DYNAMIC HIERARCHICAL CLUSTERING (DHC) 
 

HMM modeling based on multiple samples provides a better 
representation of the trajectory data. However, this is a 
“chicken-and-egg” problem. On one hand, models are  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Proposed dynamic hierarchical clustering algorithm. 
 
acquired by training on samples in one group; while on the 
other hand, groups are acquired by model-based clustering. 

1) Initialization: each trajectory in the dataset forms a 
group and is fitted with a HMM. There are N groups and N 
HMMs 
2) Distance measurements: calculate distances {dij} 
between two groups i and j in the dataset by Eqs. 2 and 4. 
3) Merging: the two groups i and j with smallest dij are 
merged into one if the following criterion is satisfied 
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where L(i | mi) and L(j | mj) are likelihood of group i and j 
generated by HMMs trained on the two groups 
respectively, L(i U j | miUj ) the likelihood of samples of 
both groups generated by HMM trained on all these 
samples, as defined in Eq. 4; otherwise no groups can be 
merged and the clustering process ends; 
4). Reclassifying: mi and mj are replaced by miUj ; then 
based on the N-1 HMMs, all the data are classified into N-
1 groups by the maximum likelihood (ML) criterion; 
5) Retraining the N-1 HMMs are retrained based on the 
updated N-1 data groups; 
6) N= N-1; go back to step 1). 
 



The common approach to solve such an interlocked problem 
is to use an iterative approach. For instance, the EM algorithm 
is an iterative way to solve the embedded problem of data 
segmentation and model parameters estimation. To allow for 
an iterative solution, trajectory clustering cannot be 
accomplished in one-step but in a hierarchical fashion instead. 
In fact, our proposed dynamic hierarchical clustering (DHC) 
algorithm is based on classic hierarchical clustering [9], 
incorporated with an iteration process of data reclassifying 
and model retraining, as described in Fig. 3. At the beginning 
of this clustering algorithm (step 0), data samples are possibly 
over fitted as each HMM is trained on just one trajectory. 
However, when samples are clustered into larger groups, the 
number of training data increases as retraining is performed 
on groups of samples instead of on a single sample at step 4. 
Therefore, the over fitted HMMs at the beginning can be 
sequentially refined/updated. Meanwhile, the first few 
samples that are probably clustered incorrectly due to 
overfitting will be gradually corrected at step 3 of 
reclassifying during the iteration process. In other words, the 
proposed DHC algorithm has the ability of self adjustment in 
both model training and data clustering. Another advantage of 
this algorithm is that it is not sensitive to the absolute 
similarity/distance values, as at step 2 only the comparison of 
distance is required to find two group candidates for merging, 
compared to the complex. Eigen value decomposition used in 
spectral clustering [2, 4]. In addition, testing is used at step 2 
to automatically decide at which level the clustering process 
stops. 
 

VI.  CONCLUSION  

Motion segmentation is based on an adaptive back-ground 
subtraction method that models each pixel as a mixture of 
Gaussians. The adaptive tracking method overcomes lighting 
effects and object trajectories are effectively obtained.The 
HMM representation of object trajectories enables the 
measure of similarity between video events by cross 
likelihood but suffers from the overfitting problem due to data 
shortage. A novel dynamic hierarchical clustering (DHC) 
approach proposed in this paper, where the HMMs are trained 
on multiple samples and the initial clustering errors caused by 
over fit are corrected in the iterative process. The proposed 
method is not sensitive to the absolute similarity values and 
calculates the number of clusters automatically.  
 

REFERENCES 

 
[1] J. Ajmera and C. Wooters, “A Robust Speaker Clustering 
Algorithm,” in IEEE Workshop on Automatic Speech Recognition 
and Understanding, pp. 411-416, December 2003. 
[2] F. Porikli and T. Haga, “Event Detection by Eigenvector 
Decomposition Using Object and Frame Features,” in IEEE 
Conference on Computer Vision and Pattern Recognition. 
[3] D. Zhang, D. Gatica-Perez, S. Bengio, and I. McCowan, “Semi-
supervised Adapted HMMs for Unusual Event Detection,” in IEEE 

Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 
611-618, June 2005. 
[4] T. Xiang and S. Gong, “Video Behaviour Profiling and 
Abnormality Detection without Manual Labelling,” in IEEE 
International Conference on Computer Vision, vol. 2, pp. 1238- 
1245, October 2005. 
[5] L. Zelnik-Manor and M. Irani, “Event-Based Analysis of Video,” 
in IEEE Conference on Computer Vision and Pattern Recognition, 
vol. 2, pp. 123-130, 2001. 
[6] H. Zhong, J. Shi, and M. Visontai, “Detecting Unusual Activity 
in Video,” in IEEE Conference on Computer Vision and Pattern 
Recognition, vol. 2, pp. 819-826, July 2004. 
[7] S. Kamijo, Y. Matsushita, K. Ikeuchi, and M. Sakauchi, “Traffic 
Monitoring and Accident Detection at Intersections,” in IEEE 
Transactions on Intelligent Transportation Systems, vol. 1, pp. 108-
118, June 2000. 
[8] G. Medioni, I. Cohen, F. Bremond, S. Hongeng, and R. Nevatia, 
“Event Detection and Analysis from Video Streams,” in IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 23, 
pp. 873-889, August 2001. 
[9] R. Duda, P. Hart, and D. Stork, “Pattern Classification,” by John 
Wiley & Sons, Inc. pp. 550-556, 2001. Workshop, pp. 114-114, June 
2004. 
[10] Fan Jiang, Ying Wu, Aggelos K. Katsaggelos, “Abnormal Event 
Detection From Surveillance  Video By Dynamic Hierarchical 
clustering “.  
[11] Ke-Xue Dai, Guo-Hui Li, Ya-Li Gan “ A Probabilistic Model 
For Surveillance Video Mining”, Proceedings of the Fifth 
International Conference on Machine Learning and Cybernetics, 
Dalian, 13-16 August 2006. 
[12] Chris Stau_er W. Eric L. Grimson “Learning patterns of activity 
using real-time tracking” Artificial Intelligence Laboratory 
Massachusetts Institute of Technology Cambridge. 
 


