A Dynamic Hierarchical

Clustering Method for

Trajectory-Based Suspected Video Event Detection

Abstract — The proposed suspected video event detection metho instance, people running represent an unusual ef/enost

is based on unsupervised clustering of object traggories, which
are modeled by hidden Markov models (HMM). The clustring-

based approach for detecting abnormalities in suni#ance video
requires the appropriate definition of similarity between events.
Motion segmentation is based on an adaptive back-gund

subtraction method that models each pixel as a miute of

Gaussians. The Gaussian distributions are then evated to
determine which are most likely to result from a bakground

process. This yields a stable, real-time outdoor tcker that

reliably deals with lighting changes, repetitive mtions from

clutter, and long-term scene changes. The HMM-basesimilarity

method falls short in handling the overfitting problem. In this

paper a multi-sample-based similarity measure is mposed,
where HMM training and distance measuring are basedon

multiple samples. These multiple training data are equired by a
novel dynamic hierarchical clustering (DHC) method. By

iteratively reclassifying and retraining the data goups at

different clustering levels, the initial training and clustering

errors due to overfitting will be sequentially corrected in later
steps.

Keywords- real-time visual tracking, adaptive background
estimation, hidden Markov model, event detection, nsupervised
clustering, Overfitting.

I. INTRODUCTION

Video surveillance systems are widely used in merportant
sites such as supermarket, bank, hotel, etc. Hawehe
captured video data are commonly stored or predeine
operators for finding abnormal moving objects oergg. The
value in use is very low.

Many surveillance applications require analysis tbé
events taking place in video streams recorded iecifip
situations, in order to find suspicious or abnorraations,
which might present a threat and should be signatea
human operator. Typically, the video camera isdigad the
site being monitored is mainly static. Object tcajeies are
extracted from the video and the video events can
represented by time sequence of the various featoirdhe
objects. In many cases, ropriori knowledge is given for
patterns of unusual video events. Thus, we aimm#dyae all
the trajectories extracted
differentiate  unusual
automatically.

trajectories from normal

To address this problem, the approach is basetiefatt
that a normal event is associated with the comnitynail the
behavior and an unusual event indicates its distéss. For

people in the crowd are walking, and a car moviggirast
traffic also represents an unusual event. Cleaviat
characterizes normality is the high recurrenceoofies similar
events. Typically, there are only a few such norpadterns in
a specific surveillance scenario. Therefore, unsuiped
clustering can be performed on all video eventghab those
events clustered into dominant (e.g., large) grocas be
identified as normalwhile those that cannot be explained by the

dominant groups (e.g., distant from all clustertees) are defined as
unusual.

In real videos, the suspicious events are rardicudlif to
describe, hard to predict and can be subtle. Sesearchers
[1-6] define events as either clusters of parameigsce
components (normal events) or outliers (abnormeahts). In
order to perform this clustering-based approachinalarity
measure between two events, probably with differtame
lengths, needs to be specified. Some recent rdgudsdefine
the distance of two HMM-represented sequences bas¢de
likelihood of observing one sequence given the Hiidned
from another sequence. To be exact, the larger likeiihood
of being generated from each other's model will the, more
similar these two sequences are. However, this scros
likelihood measurement has the problem of modet-fitteng
due to data shortage, as the HMM is trained on amg
sample. Therefore data clustering using this sirsgimple-
based similarity is quite unreliable, especially floe popular
spectral clustering algorithm [2,4-6], which is mxhely
sensitive to the construction of the similarity mafwhose
Eigen values are utilized).

In this paper first we discuss about building ausilmotion
tracker, which is required to track the objects aheir
positions to get their trajectories. Second a nrsdthple-
based similarity measure to suppress the ovediiioblem is
proposed, where HMM representation is based onrakeve
similar samples. The acquisition of these multipigining
data is by hierarchically clustering and iteratyveétraining
the whole dataset, which is summarized as dynamic
hierarchical clustering (DHC) algorithm. This algbm can
dynamically correct initial overfitting errors dsetnumbers of
training samples increase (i.e. data clusters bedarger).

from existing videos,d an
ones



Il. BUILDING A ROBUST MOTION TRACKER marked with Yellow ‘plus’ and all the noise is reweal from
foreground frame. So the proposed method of trackiniect

A robust video surveillance and monitoring systérawsd not IS robust and overcomes lighting effects.
depend on careful placement of cameras. It sholsd lae
robust to whatever is in its visual field or whatevighting
effects occur. It should be capable of dealing withvement
through cluttered areas, objects overlapping invteeal field,
shadows, lighting changes, and effects of moviegnehts of
the scene (e.g. swaying trees), slow-moving ohjeatsl
objects being introduced or removed from the sc&hes, to
monitor activities in real outdoor settings, we tha®bust
motion detection and tracking that can accounsémh a wide
range of effects. Traditional approaches based on
backgrounding methods typically fail in these gaher 2§
situations. The goal is to create a robust, adaptigacking
system that is flexible enough to handle variationkghting,
moving scene clutter, multiple moving objects anttheo
arbitrary changes to the observed scene. The irgstiticker
is primarily geared towards scene-level video sillaree
applications.
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A. Adaptive approach to motion tracking

Rather than explicitly modeling the values of &k tpixels
as one particular type of distribution, simply mbthe values
of a particular pixel as a mixture of Gaussianssdsbhon the
persistence and the variance of each of the Gasssiithe
mixture, and then determine which Gaussians marespond
to back ground colors. Pixel values that do notH#& back Fig. 1 Adaptive Tracker Result.
ground distributions are considered foreground! tinéire is a
Gaussian that includes them with sufficient, caesis lll. CLUSTERING-BASED APPROACH FOR
evidence supporting it to convert it to a new baokgd ABNORMAL EVENT DETECTION
mixture. The system adapts to deal robustly witfhting . .
changes, repetitive motions of scene elements,kitrgc A HMM rep.re-eentatmn of video e\{ents )
through cluttered regions, slow-moving objects, arl@ many existing work on surveillance video anays, 4, 7,
introducing or removing objects from the scene.wjo 8], video events are represented as object trajestor time
moving Objects take |Onger to be incorporated Ihihe evolutions of certain frame features, which can flseher

background, because their color has a larger wegigian the modeled by HMM. For example, Fig. 1(d) shows a hurime
background. Also, repetitive variations are learnadd a Mmotion is tracked and whose position can be exttafiom a
model for the background distribution is generatigintained Surveillance video monitoring a room door in reskaab. A
even if it is temporarily replaced by another disttion which HMM with Gaussian emission probability is fitted tree 2-D
leads to faster recovery when objects are removidee trajectory feature vector X(, y1), (%, ¥2), ... (xr, yr)}, where
adaptive back grounding method contains two sigaift {X Y} denotes the coordinate of object center at eviermne
parameters, the learning constant and T, the proportion &ndT is the length of the trajectory.
the data that should be accounted for by the bacigt. B. Modeling of normal events
If each pixel resulted from a single surface untieed ' i
lighting, a single Gaussian would be sufficientntodel the The clustering-based approach detects abnormaltvsn
pixel value while accounting for acquisition noidé.only first modeling normal events. After training dataat are
lighting changed over time, a single, adaptive Giaus per acquired from the history videos are represented
pixel would be sufficient. In practice, multiplerfaces often /Parameterized by HMMs as described in Sec. A,
appear in the view frustum of a particular pixeldathe Unsupervised clustering is performed on them baseda
lighting conditions change. Thus, multiple, adaptivcertan S|m|_lar|ty measure (will be _descrlbed lareSec. 1l1).
Gaussians are required. Use an adaptive mixtu@aabsians 1n€ clustering process ends up with a few dataggrotihose
to approximate this process. [12] groups containing large number of samples (e.grentioan
The figure 1 shows the results of the approach.1Hg) is the average number) are chosen as normal patteapgrand
the back ground image frame, Fig (b) is foregroumage, Fig then HMMs are learned for every normal group. These
1 (c) is red hued foreground image where objedtasked, HMMSs, denoted by fnd (k= 1, 2, ...), are models of normal
and Fig 1 (d) is the image frame where object'sitipmsis €Vents.



C. Detection of abnormal events

Based on the models of normal groups, detecticababrmal
events can be performed to new video data. Spaltific
given an unseen object trajectoyyhe likelihood of observing
i given any HMM of normal eventsy is denoted by (ijmy).
If the maximum likelihood is less than a threshalel,

max{L(i [m, )} <Th, (1)

whereTp, is a threshold, this query trajectarys detected as
abnormal.

IV. CLUSTERING ALGORITHM

A. Multi-sample-based similarity measure

In some recent work [2, 4], the distandg between two
events/trajectories andj, modeled by two HMMsn and m
respectively, is defined as:

dy =L@ m)+L(j[m)-L([m) .

whereL(i|m) denotes the log-likelihood of trajectary
utilizing the modelm for trajectoryj, normalized by
trajectory lengtiT, that is,

L( |m,-):;1_logpa m)

®)

Fig. 2. HMM modeling of object trajectories.

If the trajectories andj are different, their likelihood of being
generated by each other's modsl, | my) andL(j | m), will be
smaller than the likelihood of being generated tself's
model,L(i | m) andL(j | my), thus the distanca; will be large.
If the two trajectories are similar, the differenoetween the
cross likelihood and likelihood of self modelinglivie small,
thus the distance is small. The extreme case idtbance of
two identical trajectories will be equal to zercowever, this
HMM-based distance measure has the problem of ittiregf
with trajectory data extracted from real videostéNthat the
variances of the fitted Gaussian distributions datkd by
black ellipses in Fig. 2(a) are very small. Thisbiscause
HMM is trained on only one sample thus it fits tii@ta too
closely. This overfitted model will generate veriffetent
parameters for similar trajectories in the sameadtion (e.g.,
the two trajectories in Fig. 2(a)). As a resulte tlistance

use more similar data to train a model that alldevslarger
variation as illustrated in Fig. 2(b). In terms thiis multi-
sample-based modeling, the distance betweengneaps of
trajectories (groupsandj) can be defined similarly to Eq. 2,
except for a modification of the likelihood termhat is, we
propose the following definition

: 1 1
L(l |mj):WZ?|OgPGr |mj )
i r r
whereir denotes the-th trajectory in group (with its length
equal toT;) andN; is the number of trajectories in groupn
other words,L(i | m) is refined as the average of the
likelihood of all trajectories in grouip generated by the HMM
trained on group. The multi-sample-based distance measure
is more reliable than the one based on a singleplearfor
example, the distance between the two trajectami€sg. 2(a)
calculated by Egs. 2 and 3 is equal to 263.72, ewttie
distance between the two groups containing 20 di@jies
each in Fig. 2(b) calculated by Egs. 2 and 4 isakda
22.16[10]. As the trajectories shown in Figs. 2ajl (b) are
all on the same road and in the same directiors, they need
to be clustered into one group. This can be acdshed
much easier with a smaller distance calculatedguSop 4.

(4)

V. DYNAMIC HIERARCHICAL CLUSTERING (DHC)

HMM modeling based on multiple samples providegtien
representation of the trajectory data. Howevers tli a
“chicken-and-egg” problem. On one hand, models are

1) Initialization: each trajectory in the datasetnfis a
group and is fitted with a HMM. There aregroups andN
HMMs

2) Distance measurements: calculate distancdig}
between two groupisandj in the dataset by Eqgs. 2 and 4
3) Merging: the two groups andj with smallestdij are
merged into one if the following criterion is séitisl

LG Im)LEIm) _,

LA 0O j |mmj)
whereL(i | m) andL(j | m) are likelihood of group andj
generated by HMMs trained on the two groups
respectively,L(i U j | my;) the likelihood of samples of
both groups generated by HMM trained on all these
samples, as defined in Eq. 4; otherwise no groapshe
merged and the clustering process ends;
4). Reclassifyingm and my are replaced by gj ; then
based on thé&l-1 HMMs, all the data are classified inlb
1 groups by the maximum likelihood (ML) criterion;
5) Retraining the N-1 HMMs are retrained based lom
updated N-1 data groups;
6) N= N-1; go back to step 1).

Fig. 3 Proposed dynamic hierarchical clusteringatgm.

defined in Egq. 2 becomes too large to group similatquired by training on samples in one group; whitethe

trajectories into one cluster. One solution to firigblem is to

other hand, groups are acquired by model-basededing.



The common approach to solve such an interlockedl@m

is to use an iterative approach. For instanceEtiealgorithm
is an iterative way to solve the embedded probléndada
segmentation and model parameters estimation. [oav dibr

an iterative solution, trajectory clustering canndie

accomplished in one-step but in a hierarchicalitasmstead.
In fact, our proposed dynamic hierarchical clusigr{DHC)

algorithm is based on classic hierarchical clusteri9],

incorporated with an iteration process of data assifying
and model retraining, as described in Fig. 3. Atlteginning
of this clustering algorithm (step 0), data samplesspossibly
over fitted as each HMM is trained on just oneéetcéjry.

However, when samples are clustered into largeapgothe
number of training data increases as retrainingeisormed
on groups of samples instead of on a single saatpitep 4.
Therefore, the over fitted HMMs at the beginningn dae
sequentially refined/updated. Meanwhile, the firfaw

samples that are probably clustered incorrectly dae
overfitting  will
reclassifying during the iteration process. In othwerds, the

proposed DHC algorithm has the ability of self atijuent in

both model training and data clustering. Anotheraadage of
this algorithm is that it is not sensitive to thésalute

similarity/distance values, as at step 2 only thmgarison of
distance is required to find two group candidatesnierging,

compared to the complex. Eigen value decompositaed in

spectral clustering [2, 4]. In addition, testingused at step 2
to automatically decide at which level the clustgrprocess
stops.

VI. CONCLUSION

Motion segmentation is based on an adaptive baukrgt
subtraction method that models each pixel as aumgxbf
Gaussians. The adaptive tracking method overcoightng
effects and object trajectories are effectively aiied.The
HMM representation of object trajectories enabldse t
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measure of similarity between video events by cross

likelihood but suffers from the overfitting probletinie to data
shortage. A novel dynamic hierarchical clusterinigHC)
approach proposed in this paper, where the HMMgraneed
on multiple samples and the initial clustering esrcaused by
over fit are corrected in the iterative processe fnoposed
method is not sensitive to the absolute similavityues and
calculates the number of clusters automatically.
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